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Abstract
The task of robust tensor principal component anal-
ysis (RTPCA) is to separate the underlying low-
rank component and sparse component in high-
dimensional data. In RTPCA, an order-3 tensor
X ∈ RI1×I2×I3 can be decomposed as X = L+E ,
where L and E represent a low-rank tensor and a
sparse tensor, respectively. Compared with tradi-
tional RPCA methods for two-way data, RTPCA
can make good use of the multi-dimensional struc-
ture, has found successful applications in back-
ground modeling, image denoising, illumination
normalization for face images, etc.
The key of RTPCA problem is how to recover L
and S accurately. Several different sparse con-
straints are adopted according to different applica-
tions [Zhang et al., 2014; Zhou and Feng, 2017].
Among them, the most commonly used one is the
`1 norm. Meanwhile, a number of tensor decom-
positions produce diverse tensor ranks for low-
rank component estimation. Unlike the traditional
canonical polyadic (CP) decomposition and Tucker
decomposition, the recently proposed tensor singu-
lar value decomposition (t-SVD) has lower compu-
tational complexity by employing fast Fourier tran-
form in the 3rd mode. As the corresponding tubal
rank minimization problem is highly non-convex,
the rank term is usually relaxed into a convex tensor
nuclear norm (TNN). The RTPCA based on stan-
dard t-SVD can be formulated as follows [Lu et al.,
2016; Lu et al., 2019]:

minimize
L, E

‖L‖TNN+λ‖E‖1, s. t. X = L+E (1)

where λ makes balance of the low rank compo-
nent and the sparse component. This optimization
model can be solved by the alternating direction
method of multipliers (ADMM), which is trans-
formed into two subproblems including low-rank
approximation and sparse approximation.
This extended abstract gives a brief survey of the
recent advances on RTPCA. In classical ways, the
observed tensor is processed directly in its origi-
nal scale. However, the original scale may not be

the optimal one for analysis. In [Chen et al., 2017;
Feng et al., 2020], the whole tensor is split into a
number of small block tensors and low rank com-
ponent is extracted in blocks. The robust block ten-
sor principal component analysis (RBTPCA) can
be formulated into:

min
Lp,E

P∑
p=1

‖Lp‖TNN + λ‖E‖1

s. t. X = L1 � L2 � · · ·� LP + E

(2)

where P is the number of small blocks divided
from the original data; � represents the concate-
nation operator of blocks; Lp is the low rank com-
ponent of block tensor Xp, p = 1, 2, · · · , P ; E de-
notes the sparse component. RBTPCA could utilize
the similarity of local pixels to extract more details.
The iterative block tensor singular value threshold
operator has been strictly derived for the low-rank
approximation subproblem and the block tensor in-
coherence conditions have been given to guarantee
the successful recovery. In addition, we analyze
the effect of block size on accuracy and conver-
gence speed. Experimental results show a carefully
selected scale can improve the performance. Es-
pecially on illumination normalization for face im-
ages, RBTPCA can remove almost all shadows on
face, which is meaningful for face detection.
On the other hand, t-SVD has some drawbacks and
the classic TNN could not extract the low rank com-
ponent very well. The t-SVD of A ∈ RI1×I2×I3

can be represented asA = U ∗S ∗VT, and its com-
putation process can be summarized as follows:

1. Taking the Discrete Fourier Transformation
(DFT) of A along the third mode to obtain Â;

2. Computing matrix SVD of each frontal slice
of Â in the first and second dimensions;

3. Taking the Inverse Discrete Fourier Transfor-
mation (IDFT).

As the t-SVD deals with the first and second modes
of tensor data through the matrix SVD but leaves
the third mode by DFT, the low rank information
on third mode may not be fully exploited. At



least the performance may vary due to the rota-
tion variance of the t-SVD. [Chen et al., 2018;
Liu et al., 2018] find low rank structure still ex-
ists in the core tensor S. To further exploit the low
rank structure, the low rank component is further
extracted from the core matrix S whose entries are
from the diagonal elements of the core tensor S.
Defining S ∈ RI1×I2×I3 and I = min (I1, I2), the
core matrix S ∈ RI×I3 satisfies S(i, :) = S(i, i :).
Specifically, combining the matrix nuclear norm of
core matrix with the classical TNN, the low rank
structure in all modes of the target tensor will be
better characterized. The obtained improved tensor
nuclear norm (ITNN) is defined as follows:

‖A‖ITNN = ‖A‖TNN + λS‖S‖∗ (3)

where λS is a parameter to balance the two terms.
In contrast to the classical TNN, the additional term
‖S‖∗ can additionally exploit low rank information
in the third mode. The proposed ITNN tries to
take advantage of structural feature of tensor data
as completely as possible.
Based on the newly defined ITNN, the improved
robust tensor principal component analysis (IRT-
PCA) optimization model is formulated as:

min
L, E
‖L‖ITNN + λ‖E‖1

s. t. X = L+ E
(4)

By additionally exploiting correlation in the third
mode, the IRTPCA achieves better performance in
a series of image processing applications. Espe-
cially in background extraction, because the low
rank structure of video mainly lies in the third mode
due to the correlation between frames, the addi-
tional low rank extraction can effectively outper-
form the classical one with standard TNN.
As introduced before, t-SVD can be computed effi-
ciently by DFT and matrix SVD. Different frontal
slices of data in the Fourier domain have vary fre-
quency characteristics. For example, a color im-
age has three color channels and there will be
two frequency bands in Fourier domain. One is
called zero-frequency band, which always contains
the most texture information of this image. The
other always indicates the difference information of
three channels. In order to better utilize the prior
knowledge of frequency spectrum in the t-SVD
based low-rank component estimation, [Wang et
al., 2020] propose frequency-weighted tensor nu-
clear norm (FTNN) by performing frequency com-
ponent analysis on the 3rd mode. The frequency-
weighting vector depends on the prior knowledge
of data in the Fourier domain.
The classical TNN based RTPCA can be regarded
as a special case of these three generalized ones,
i. e. RBTPCA, IRTPCA, FTNN-RTPCA. In the
future, multi-scale concept can be integrated into

more versions of RTPCA. The low rank approxima-
tion based on ITNN can be generalized into higher-
order tensor data to deal with the other problem
of t-SVD that it can only process 3-order tensor.
The frequency analysis on the 3rd can be modified
into data-driven version. The omni-directional total
variation can replace the classical sparse constraints
too [Liu et al., 2017].
Besides of t-SVD and its variants, some other de-
compositions are used in RTPCA, such as tensor
train, tensor tree. They may achieve better accuracy
in low rank tensor component estimation, but the
computational efficiency is inferior. Those meth-
ods can be applied when the accuracy is much more
important than computational efficiency.
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